人工智能教程 - 数学基础课程1.1 - 数学分析(一)34-35 泰勒级数

Victoria ·
更新时间:2024-11-01
· 820 次阅读

泰勒级数在这里插入图片描述

在这里插入图片描述

CN+1=NCN+1(CN+1)N+1−(N+1)CN+1N+1C_{N+1}=\frac{NC_N+1(C_N+1)}{N+1}-\frac{(N+1)C_N+1}{N+1}CN+1​=N+1NCN​+1(CN​+1)​−N+1(N+1)CN​+1​

Center of mass of N+1 blocks

X-coordinate

CN+1=CN+1N+1C_{N+1}=C_N+\frac{1}{N+1}CN+1​=CN​+N+11​

C1=1C_1=1C1​=1
C2=1+12C_2=1+\frac{1}{2}C2​=1+21​
C3=C2+13=1+12+13C_3=C_2+\frac{1}{3}=1+\frac{1}{2}+\frac{1}{3}C3​=C2​+31​=1+21​+31​
CN=1+12+13+14+...+1NC_N=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{N}CN​=1+21​+31​+41​+...+N1​

CN=SNC_N=S_NCN​=SN​
lnN<SN<(lnN)+1lnN<S_N<(lnN)+1lnN<SN​<(lnN)+1
as  N→∞,lnN→∞  and  SN→∞as \ \ N\rightarrow \infty,lnN\rightarrow \infty \ \ and \ \ S_N \rightarrow \inftyas  N→∞,lnN→∞  and  SN​→∞

Power Series 1+x+x2+x3+...=11−x1+x+x^2+x^3+...=\frac{1}{1-x}1+x+x2+x3+...=1−x1​

|x|<1 (geometric series)

(converge)

(1+x+x2)=S(1+x+x^2) =S(1+x+x2)=S
x+x2+x3+...=Sxx+x^2+x^3+... =Sxx+x2+x3+...=Sx
1=S−Sx=S(1−x)1=S-Sx =S(1-x)1=S−Sx=S(1−x)

Resoning incomplete because it requires S exists General Power Series a0+a1x+a2x2+a3x3+...=∑n=0∞anxna_0+a_1x+a_2x^2+a_3x^3+... =\sum_{n=0}^{\infty}a_nx^na0​+a1​x+a2​x2+a3​x3+...=∑n=0∞​an​xn |x|<R(radius of convergence) (-R<x<R)

where series convergence ∑anxn\sum a_nx^n∑an​xn diverge

|x|>R very delicate borderline(很微妙的边界)—not used by us

∣anxn∣→0|a_nx^n|\rightarrow 0∣an​xn∣→0 exponentially fast |x|<R

∣anxn∣≠→0|a_nx^n|\neq \rightarrow 0∣an​xn∣​=→0 for |x|>R

Rules for conergant power series are just like polynomials f(x)+g(x),f(x).g(x),f(g(x)),f(x)/g(x)

ddxf(x),∫f(x)dx\frac{d}{dx}f(x),\int f(x)dxdxd​f(x),∫f(x)dx

ddx(a0+a1x+a2x2+a3x3+...)=a1+2a2x+3a3x2+...\frac{d}{dx}(a_0+a_1x+a_2x^2+a_3x^3+...)=a_1+2a_2x+3a_3x^2+...dxd​(a0​+a1​x+a2​x2+a3​x3+...)=a1​+2a2​x+3a3​x2+...
∫(a0+a1x+a2x2+...)dx=c+a0+a1x2/2+a2x3/3+...\int(a_0+a_1x+a_2x^2+...)dx=c+a_0+a_1x^2/2+a_2x^3/3+...∫(a0​+a1​x+a2​x2+...)dx=c+a0​+a1​x2/2+a2​x3/3+...

Taylor’s formula: f(x)=∑n=0∞f(n)(0)n!xnf(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^nf(x)=∑n=0∞​n!f(n)(0)​xn 级数 f(x)=f(0)+f′(0)x+f′′(0)2!x2+...\LARGE f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+...f(x)=f(0)+f′(0)x+2!f′′(0)​x2+...

Ex: (Euler欧拉)

x=0
f(x)=exf(x)=e^xf(x)=ex 1
f′(x)=exf'(x)=e^xf′(x)=ex 1
f′′(x)=exf''(x)=e^xf′′(x)=ex 1

ex=1+x+x22!+x33!+...\LARGE e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...ex=1+x+2!x2​+3!x3​+...

Ex2:

11+x=1−x+x2−x3+...\LARGE \frac{1}{1+x}=1-x+x^2-x^3+...1+x1​=1−x+x2−x3+...

Ex3:

sin(x)=x−x33!+x55!−...\LARGE sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-...sin(x)=x−3!x3​+5!x5​−...

New Power Series From Old 1). Multiply

xsin(x)=x2−x43!+x65!−...\LARGE xsin(x)=x^2-\frac{x^4}{3!}+\frac{x^6}{5!}-...xsin(x)=x2−3!x4​+5!x6​−...

2). Differentiate求导

cos(x)=sin′(x)=1−3x23!+5x45!−...=1−x22+x44!−...\LARGE cos(x)=sin'(x)=1-\frac{3x^2}{3!}+\frac{5x^4}{5!}-...\LARGE =1-\frac{x^2}{2}+\frac{x^4}{4!}-...cos(x)=sin′(x)=1−3!3x2​+5!5x4​−...=1−2x2​+4!x4​−...

3). Integrate:

ln(1+x)=∫0xdt1+t\LARGE ln(1+x)=\int_{0}^{x}\frac{dt}{1+t}ln(1+x)=∫0x​1+tdt​

(x>−1)=∫0x(1−t+t2+t3+...)dt\LARGE (x>-1)=\int_0^x(1-t+t^2+t^3+...)dt(x>−1)=∫0x​(1−t+t2+t3+...)dt

=[t−t22+t33−t44+...]∣0x\LARGE =[t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4}+...]|_0^x=[t−2t2​+3t3​−4t4​+...]∣0x​

ln(1+x)=[x−x22+x33−x44+...](R=1)\LARGE ln(1+x)=[x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...](R=1)ln(1+x)=[x−2x2​+3x3​−4x4​+...](R=1)

4).Substitue:

e−t2\LARGE e^{-t^2}e−t2(x=−t2;in  ex)\LARGE (x=-t^2;in \ \ e^x)(x=−t2;in  ex)

=1−t2+t42!+t63!−...\LARGE =1-t^2+\frac{t^4}{2!}+\frac{t^6}{3!}-...=1−t2+2!t4​+3!t6​−...

Erf(x)=2π∫0xe−t2dx=2π(x−x33+x55.2!−737.3!+...)\LARGE Er f(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}dx\LARGE =\frac{2}{\sqrt{\pi}}(x-\frac{x^3}{3}+\frac{x^5}{5.2!}-\frac{7^3}{7.3!}+...)Erf(x)=π​2​∫0x​e−t2dx=π​2​(x−3x3​+5.2!x5​−7.3!73​+...)


作者:KuFun人工智能



数学分析 泰勒级数 数学 课程 人工智能 教程

需要 登录 后方可回复, 如果你还没有账号请 注册新账号