1 系统fork进程分析
1.1 fork函数分析
1.2 system_server进程启动流程
1.2.1 SystemServer run方法分析
2 AMS职责分析
2.1 App启动流程分析
2.1.1 app进程创建
2.1.2 app进程启动流程分析
2.1.3 ActivityThead分析
1 系统fork进程分析我们知道,Zygote进程创建的第一个进程就是system_server进程,这个进程的主要作用就是管理服务,例如我们常见的AMS、WMS、PMS等,同时为App进程提供服务支持。
1.1 fork函数分析这里我们拿forkSystemServer方法对应的JNI函数进行分析,在上一节中已经分析了会调用ForkCommon函数进行进程创建,我们看在这个方法中,调用了fork函数。
static pid_t ForkCommon(JNIEnv* env, bool is_system_server,
const std::vector<int>& fds_to_close,
const std::vector<int>& fds_to_ignore) {
SetSignalHandlers();
// Curry a failure function.
auto fail_fn = std::bind(ZygoteFailure, env, is_system_server ? "system_server" : "zygote",
nullptr, _1);
// Temporarily block SIGCHLD during forks. The SIGCHLD handler might
// log, which would result in the logging FDs we close being reopened.
// This would cause failures because the FDs are not whitelisted.
//
// Note that the zygote process is single threaded at this point.
BlockSignal(SIGCHLD, fail_fn);
// Close any logging related FDs before we start evaluating the list of
// file descriptors.
__android_log_close();
stats_log_close();
// If this is the first fork for this zygote, create the open FD table. If
// it isn't, we just need to check whether the list of open files has changed
// (and it shouldn't in the normal case).
if (gOpenFdTable == nullptr) {
gOpenFdTable = FileDescriptorTable::Create(fds_to_ignore, fail_fn);
} else {
gOpenFdTable->Restat(fds_to_ignore, fail_fn);
}
android_fdsan_error_level fdsan_error_level = android_fdsan_get_error_level();
//调用fork函数,创建进程
pid_t pid = fork();
if (pid == 0) {
// The child process.
PreApplicationInit();
// Clean up any descriptors which must be closed immediately
DetachDescriptors(env, fds_to_close, fail_fn);
// Invalidate the entries in the USAP table.
ClearUsapTable();
// Re-open all remaining open file descriptors so that they aren't shared
// with the zygote across a fork.
gOpenFdTable->ReopenOrDetach(fail_fn);
// Turn fdsan back on.
android_fdsan_set_error_level(fdsan_error_level);
} else {
ALOGD("Forked child process %d", pid);
}
// We blocked SIGCHLD prior to a fork, we unblock it here.
UnblockSignal(SIGCHLD, fail_fn);
return pid;
}
fork函数最终返回了一个pid,在这里会对pid判断,这里伙伴们需要注意,虽然fork只会执行一次,但是在返回值上会有两次返回,这是什么原因呢?
因为我们在fork进程的时候,我们会在父进程中执行fork函数,同时会将父进程的信息全部拷贝一份,包括堆栈信息,也就是代码会在子进程中再次执行一次,所以从现象上来看,在forkSystemServer方法执行时,会有两次返回,一次是从父进程返回,一次从子进程中返回,那么如何判断是在哪个进程呢?
在ForkCommon函数中给了我们答案,当pid = 0时,因为在子进程中没有创建进程,因此返回0;而在父进程中则是会返回创建的子进程pid;如果返回一个负值,那么说明创建进程失败了。
ZygoteInit # forkSystemServer
/* For child process */
if (pid == 0) {
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
zygoteServer.closeServerSocket();
return handleSystemServerProcess(parsedArgs);
}
因此,在ZygoteInit调用forkSystemServer之后,会判断其返回值,如果pid = 0,那么就说明创建进程成功了,而且是子进程,那么就会执行handleSystemServerProcess方法,此时运行在system_server进程。
1.2 system_server进程启动流程private static Runnable handleSystemServerProcess(ZygoteArguments parsedArgs) {
//......
if (parsedArgs.mInvokeWith != null) {
String[] args = parsedArgs.mRemainingArgs;
// If we have a non-null system server class path, we'll have to duplicate the
// existing arguments and append the classpath to it. ART will handle the classpath
// correctly when we exec a new process.
if (systemServerClasspath != null) {
String[] amendedArgs = new String[args.length + 2];
amendedArgs[0] = "-cp";
amendedArgs[1] = systemServerClasspath;
System.arraycopy(args, 0, amendedArgs, 2, args.length);
args = amendedArgs;
}
WrapperInit.execApplication(parsedArgs.mInvokeWith,
parsedArgs.mNiceName, parsedArgs.mTargetSdkVersion,
VMRuntime.getCurrentInstructionSet(), null, args);
throw new IllegalStateException("Unexpected return from WrapperInit.execApplication");
} else {
ClassLoader cl = getOrCreateSystemServerClassLoader();
if (cl != null) {
Thread.currentThread().setContextClassLoader(cl);
}
/*
* Pass the remaining arguments to SystemServer.
*/
return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion,
parsedArgs.mDisabledCompatChanges,
parsedArgs.mRemainingArgs, cl);
}
/* should never reach here */
}
具体调用链会执行ZygoteInit的zygoteInit方法,在这个方法中,又会执行RuntimeInit的applicationInit方法。
public static Runnable zygoteInit(int targetSdkVersion, long[] disabledCompatChanges,
String[] argv, ClassLoader classLoader) {
if (RuntimeInit.DEBUG) {
Slog.d(RuntimeInit.TAG, "RuntimeInit: Starting application from zygote");
}
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ZygoteInit");
RuntimeInit.redirectLogStreams();
RuntimeInit.commonInit();
ZygoteInit.nativeZygoteInit();
return RuntimeInit.applicationInit(targetSdkVersion, disabledCompatChanges, argv,
classLoader);
}
在看applicationInit方法之前,首先先看一下ZygoteInit中的nativeZygoteInit,这个方法比较重要,我们跟进看一下。
private static native void nativeZygoteInit();
这是一个native方法,我们看下C++的代码
int register_com_android_internal_os_ZygoteInit_nativeZygoteInit(JNIEnv* env)
{
const JNINativeMethod methods[] = {
{ "nativeZygoteInit", "()V",
(void*) com_android_internal_os_ZygoteInit_nativeZygoteInit },
};
return jniRegisterNativeMethods(env, "com/android/internal/os/ZygoteInit",
methods, NELEM(methods));
}
最终执行的是AndroidRuntime的onZygoteInit函数。
virtual void onZygoteInit()
{
sp<ProcessState> proc = ProcessState::self();
ALOGV("App process: starting thread pool.\n");
proc->startThreadPool();
}
如果有熟悉Binder源码的伙伴,这里其实就是会创建Binder驱动并启动Binder线程池,所以这里就有一个面试题,Binder驱动是什么时候启动的?其实就是在fork进程成功之后,处理进程启动的时候完成的,具体函数就是在ZygoteInit的nativeZygoteInit方法。
protected static Runnable applicationInit(int targetSdkVersion, long[] disabledCompatChanges,
String[] argv, ClassLoader classLoader) {
// If the application calls System.exit(), terminate the process
// immediately without running any shutdown hooks. It is not possible to
// shutdown an Android application gracefully. Among other things, the
// Android runtime shutdown hooks close the Binder driver, which can cause
// leftover running threads to crash before the process actually exits.
nativeSetExitWithoutCleanup(true);
VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
VMRuntime.getRuntime().setDisabledCompatChanges(disabledCompatChanges);
final Arguments args = new Arguments(argv);
// The end of of the RuntimeInit event (see #zygoteInit).
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
// Remaining arguments are passed to the start class's static main
return findStaticMain(args.startClass, args.startArgs, classLoader);
}
这个方法最终执行findStaticMain方法,这个方法的其实很简单,就是通过反射的方式去查找对应的className的main方法,像我们现在是启动system_server进程,所以查找的就是system_server的main方法,最终去执行对应的main方法,这样system_server进程就已经启动了。
public static void main(String[] args) {
new SystemServer().run();
}
我们可以看到,SystemServer的main方法,就是创建一个SystemServer对象并执行其run方法。
1.2.1 SystemServer run方法分析private void run() {
TimingsTraceAndSlog t = new TimingsTraceAndSlog();
try {
//启动服务之前的初始化操作
t.traceBegin("InitBeforeStartServices");
// ......
// Ensure binder calls into the system always run at foreground priority.
BinderInternal.disableBackgroundScheduling(true);
// Increase the number of binder threads in system_server
BinderInternal.setMaxThreads(sMaxBinderThreads);
// Prepare the main looper thread (this thread).
android.os.Process.setThreadPriority(
android.os.Process.THREAD_PRIORITY_FOREGROUND);
android.os.Process.setCanSelfBackground(false);
Looper.prepareMainLooper();
Looper.getMainLooper().setSlowLogThresholdMs(
SLOW_DISPATCH_THRESHOLD_MS, SLOW_DELIVERY_THRESHOLD_MS);
// Initialize native services.
System.loadLibrary("android_servers");
// Allow heap / perf profiling.
initZygoteChildHeapProfiling();
// Debug builds - spawn a thread to monitor for fd leaks.
if (Build.IS_DEBUGGABLE) {
spawnFdLeakCheckThread();
}
// Check whether we failed to shut down last time we tried.
// This call may not return.
performPendingShutdown();
// Initialize the system context.
createSystemContext();
// ......
// Create the system service manager.
mSystemServiceManager = new SystemServiceManager(mSystemContext);
mSystemServiceManager.setStartInfo(mRuntimeRestart,
mRuntimeStartElapsedTime, mRuntimeStartUptime);
mDumper.addDumpable(mSystemServiceManager);
// ......
} finally {
t.traceEnd(); // InitBeforeStartServices
}
// Start services.
try {
t.traceBegin("StartServices");
startBootstrapServices(t);
startCoreServices(t);
startOtherServices(t);
} catch (Throwable ex) {
Slog.e("System", "******************************************");
Slog.e("System", "************ Failure starting system services", ex);
throw ex;
} finally {
t.traceEnd(); // StartServices
}
//......
// Loop forever.
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
在system_server的run方法中
我们看到有创建Looper对象,因为作为一个进程,首先不会执行完成之后立刻结束,包括前面在分析idle、init、zygote进程时,都是创建死循环处理消息,所以system_server也是如此。再往下看,我们看到执行了createSystemContext方法,看注释是创建了系统的上下文。private void createSystemContext() {
ActivityThread activityThread = ActivityThread.systemMain();
mSystemContext = activityThread.getSystemContext();
mSystemContext.setTheme(DEFAULT_SYSTEM_THEME);
final Context systemUiContext = activityThread.getSystemUiContext();
systemUiContext.setTheme(DEFAULT_SYSTEM_THEME);
}
创建系统的ServiceManager,用来管理系统服务,也就是后续的三个比较重要的方法,都需要使用SystemServiceManager来启动服务。
private void startBootstrapServices(@NonNull TimingsTraceAndSlog t) {
t.traceBegin("startBootstrapServices");
// ......
// Activity manager runs the show.
t.traceBegin("StartActivityManager");
// TODO: Might need to move after migration to WM.
ActivityTaskManagerService atm = mSystemServiceManager.startService(
ActivityTaskManagerService.Lifecycle.class).getService();
mActivityManagerService = ActivityManagerService.Lifecycle.startService(
mSystemServiceManager, atm);
mActivityManagerService.setSystemServiceManager(mSystemServiceManager);
mActivityManagerService.setInstaller(installer);
mWindowManagerGlobalLock = atm.getGlobalLock();
t.traceEnd();
// ......
}
这里我就拿启动AMS来做介绍,其实与startBootstrapServices同级的三个方法内部都是通过SystemServiceManager来启动服务,所以我们看一下SystemServiceManager的startService方法具体实现:
public void startService(@NonNull final SystemService service) {
// Register it.
mServices.add(service);
// Start it.
long time = SystemClock.elapsedRealtime();
try {
service.onStart();
} catch (RuntimeException ex) {
throw new RuntimeException("Failed to start service " + service.getClass().getName()
+ ": onStart threw an exception", ex);
}
warnIfTooLong(SystemClock.elapsedRealtime() - time, service, "onStart");
}
其实所有startService最终都会调用这个方法,传值为SystemService对象,其实无论是AMS、WMS还是其他的系统服务,都是继承SystemService,因此在SystemServiceManager中有一个mServices List来收集这些系统服务,最终启动就是调用SystemService的onStart方法。
/**
* Called when the system service should publish a binder service using
* {@link #publishBinderService(String, IBinder).}
*/
public abstract void onStart();
我们看下SystemService对于onStart方法的定义,当调用这个方法的时候,会调用publishBinderService将其注册binder service中。
protected final void publishBinderService(String name, IBinder service,
boolean allowIsolated, int dumpPriority) {
ServiceManager.addService(name, service, allowIsolated, dumpPriority);
}
如果熟悉Binder进程间通信的伙伴,我们通常喜欢叫ServiceManager为大管家,是因为ServiceManager属于Binder中用于管理各类服务的对象,尤其是涉及到跨进程通信。
所以这里有几个对象,我们需要分清楚一些:
SystemServer:Zygote fork出来的一个进程,主要用来管理各类服务;
SystemService:所有系统服务的父类,例如AMS、WMS、PKMS等都是这个大类的子类;
SystemServiceManager:属于SystemServer进程,在SystemServer进程启动时创建,SystemServer真正用于管理服务的类,其中startService方法用于启动服务;
ServiceManager:系统服务大管家,用于跨进程通信,例如app进程想要与AMS通信,那么就需要通过ServerManager来完成进程间通信。
如此一来,SystemServer进程也就启动完成了。
2 AMS职责分析前面对于SystemServer的启动流程分析中,我们知道会启动AMS服务,其实在Android10之前,AMS是会管理Activity、Service、广播、Provider四大组件的启动,但是因为职责太多,在Android10之后,专门使用ActivityTaskManagerService(ATMS)来管理Activity的启动。
2.1 App启动流程分析如果有做过Launcher的伙伴,应该明白当我们点击一个APP ICON的时候,就会启动一个app,这时APP的启动方式有很多,例如通过包名启动、通过scheme启动,那么从点击ICON到APP展示首页,这个过程是如何完成的呢?这里AMS就起到作用了。
因为当我们启动一个app的时候,无论是通过包名还是scheme,都是启动的Activity;例如我们通过包名启动,那么就会启动在Manifest清单文件中,标注android.intent.category.LAUNCHER的Activity;
<activity
android:name=".MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
如果是通过scheme启动,那么也是启动标注这个scheme的Activity,所以当app启动的时候,也是启动Activity,所以最终我们还是继续分析Activity的启动流程,但是对于app进程是如何创建的,我们首先需要了解其中的原理。
2.1.1 app进程创建通过前面的分析,我们知道app启动其实也是Activity的启动,所以肯定涉及到ATMS的职责,所以当启动一个app(Activity)的时候,system_server进程首先会判断当前要启动的这个进程是否存在,如果不存在,那么就需要通知Zygote进程去fork app进程。
所以这里就涉及到了system_server进程与Zygote进程间通信,我们知道当Zygote进程初始化的时候,创建了ZygoteServer对象,也就是socket,所以system_server通过socket发送消息通知Zygote去fork app进程。
ATMS # startProcessAsync
void startProcessAsync(ActivityRecord activity, boolean knownToBeDead, boolean isTop,
String hostingType) {
try {
if (Trace.isTagEnabled(TRACE_TAG_WINDOW_MANAGER)) {
Trace.traceBegin(TRACE_TAG_WINDOW_MANAGER, "dispatchingStartProcess:"
+ activity.processName);
}
// Post message to start process to avoid possible deadlock of calling into AMS with the
// ATMS lock held.
final Message m = PooledLambda.obtainMessage(ActivityManagerInternal::startProcess,
mAmInternal, activity.processName, activity.info.applicationInfo, knownToBeDead,
isTop, hostingType, activity.intent.getComponent());
mH.sendMessage(m);
} finally {
Trace.traceEnd(TRACE_TAG_WINDOW_MANAGER);
}
}
在这个方法中,我们看到是调用ActivityManagerInternal # startProcess方法,这个就是真正去启动app进程的方法,我们跟进看一下,具体怎么发送socket消息的。
AMS # LocalService #startProcess
@Override
public void startProcess(String processName, ApplicationInfo info, boolean knownToBeDead,
boolean isTop, String hostingType, ComponentName hostingName) {
try {
if (Trace.isTagEnabled(Trace.TRACE_TAG_ACTIVITY_MANAGER)) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "startProcess:"
+ processName);
}
synchronized (ActivityManagerService.this) {
// If the process is known as top app, set a hint so when the process is
// started, the top priority can be applied immediately to avoid cpu being
// preempted by other processes before attaching the process of top app.
startProcessLocked(processName, info, knownToBeDead, 0 /* intentFlags */,
new HostingRecord(hostingType, hostingName, isTop),
ZYGOTE_POLICY_FLAG_LATENCY_SENSITIVE, false /* allowWhileBooting */,
false /* isolated */);
}
} finally {
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
}
}
final ProcessRecord startProcessLocked(String processName,
ApplicationInfo info, boolean knownToBeDead, int intentFlags,
HostingRecord hostingRecord, int zygotePolicyFlags, boolean allowWhileBooting,
boolean isolated) {
return mProcessList.startProcessLocked(processName, info, knownToBeDead, intentFlags,
hostingRecord, zygotePolicyFlags, allowWhileBooting, isolated, 0 /* isolatedUid */,
null /* ABI override */, null /* entryPoint */,
null /* entryPointArgs */, null /* crashHandler */);
}
这里我们发现有两个比较重要的对象:ProcessRecord和mProcessList;
其中ProcessRecord,顾名思义就是进程的记录类,用来记录这些进程的信息,包括与App进程通信的IApplicationThread Binder对象;
mProcessList则是一个列表,因为进程启动需要ATMS来通知Zygote,因此ATMS需要管理多个进程,因此使用mProcessList用来存储多个ProcessRecord,而且是按照最近使用最少原则(NLU)进行处理,记录各个进程的信息。
所以最终在启动进程的时候,就是调用了mProcessList的startProcessLocked方法,第一个参数就是进程名。最终调用的就是android.os.Process的start方法。
Tools for managing OS processes
对于Process相信伙伴们也不会陌生,我们在杀进程或者获取进程id的时候都会使用到其中的方法,官方给出的解释就是管理系统进程的工具类。
android.os.Process # start
public static ProcessStartResult start(@NonNull final String processClass,
@Nullable final String niceName,
int uid, int gid, @Nullable int[] gids,
int runtimeFlags,
int mountExternal,
int targetSdkVersion,
@Nullable String seInfo,
@NonNull String abi,
@Nullable String instructionSet,
@Nullable String appDataDir,
@Nullable String invokeWith,
@Nullable String packageName,
int zygotePolicyFlags,
boolean isTopApp,
@Nullable long[] disabledCompatChanges,
@Nullable Map<String, Pair<String, Long>>
pkgDataInfoMap,
@Nullable Map<String, Pair<String, Long>>
whitelistedDataInfoMap,
boolean bindMountAppsData,
boolean bindMountAppStorageDirs,
@Nullable String[] zygoteArgs) {
return ZYGOTE_PROCESS.start(processClass, niceName, uid, gid, gids,
runtimeFlags, mountExternal, targetSdkVersion, seInfo,
abi, instructionSet, appDataDir, invokeWith, packageName,
zygotePolicyFlags, isTopApp, disabledCompatChanges,
pkgDataInfoMap, whitelistedDataInfoMap, bindMountAppsData,
bindMountAppStorageDirs, zygoteArgs);
}
我们看到Process的start方法,最终调用的是ZYGOTE_PROCESS的start方法,那么ZYGOTE_PROCESS是什么呢?
public static final ZygoteProcess ZYGOTE_PROCESS = new ZygoteProcess();
它是一个ZygoteProcess对象,官方解释如下:
Maintains communication state with the zygote processes. This class is responsible for the sockets opened to the zygotes and for starting processes on behalf of the Process class.
主要是用于维持与Zygote进程的通信,这个类的职责就是打开Zygote进程的socket并创建进程。
所以走到这里,就进入到了与Zygote进程进行socket通信的过程了。在通信之前,会封装一系列关于进程相关的参数,最终调用attemptZygoteSendArgsAndGetResult方法与Zygote进程进行通信。
private Process.ProcessStartResult attemptZygoteSendArgsAndGetResult(
ZygoteState zygoteState, String msgStr) throws ZygoteStartFailedEx {
try {
final BufferedWriter zygoteWriter = zygoteState.mZygoteOutputWriter;
final DataInputStream zygoteInputStream = zygoteState.mZygoteInputStream;
//进行socket通信
zygoteWriter.write(msgStr);
zygoteWriter.flush();
// Always read the entire result from the input stream to avoid leaving
// bytes in the stream for future process starts to accidentally stumble
// upon.
Process.ProcessStartResult result = new Process.ProcessStartResult();
result.pid = zygoteInputStream.readInt();
result.usingWrapper = zygoteInputStream.readBoolean();
if (result.pid < 0) {
throw new ZygoteStartFailedEx("fork() failed");
}
return result;
} catch (IOException ex) {
zygoteState.close();
Log.e(LOG_TAG, "IO Exception while communicating with Zygote - "
+ ex.toString());
throw new ZygoteStartFailedEx(ex);
}
}
前面我们 对于Zygote启动流程的分析,在ZygoteServer创建之后,就会调用runSelectLoop方法进行死循环,当接收到Socket消息之后,就会处理消息,最终调用forkAndSpecialize方法来创建一个进程。这里就与第一小节中介绍的一致,当创建进程之后,会判断fork返回的pid是否为0。
static int forkAndSpecialize(int uid, int gid, int[] gids, int runtimeFlags,
int[][] rlimits, int mountExternal, String seInfo, String niceName, int[] fdsToClose,
int[] fdsToIgnore, boolean startChildZygote, String instructionSet, String appDataDir,
boolean isTopApp, String[] pkgDataInfoList, String[] allowlistedDataInfoList,
boolean bindMountAppDataDirs, boolean bindMountAppStorageDirs) {
ZygoteHooks.preFork();
int pid = nativeForkAndSpecialize(
uid, gid, gids, runtimeFlags, rlimits, mountExternal, seInfo, niceName, fdsToClose,
fdsToIgnore, startChildZygote, instructionSet, appDataDir, isTopApp,
pkgDataInfoList, allowlistedDataInfoList, bindMountAppDataDirs,
bindMountAppStorageDirs);
if (pid == 0) {
// Note that this event ends at the end of handleChildProc,
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "PostFork");
// If no GIDs were specified, don't make any permissions changes based on groups.
if (gids != null && gids.length > 0) {
NetworkUtilsInternal.setAllowNetworkingForProcess(containsInetGid(gids));
}
}
// Set the Java Language thread priority to the default value for new apps.
Thread.currentThread().setPriority(Thread.NORM_PRIORITY);
ZygoteHooks.postForkCommon();
return pid;
}
2.1.2 app进程启动流程分析
前面我们介绍,在ATMS中通过Socket通信通知Zygote创建一个app进程之后,后续app进程启动流程如何,我们接着往下看。
当发送指令告诉Zygote创建进程之后,如果创建子进程成功,那么此时pid == 0,会进入到if代码块中,调用handleChildProc方法。
// Continue using old code for now. TODO: Handle these cases in the other path.
pid = Zygote.forkAndSpecialize(parsedArgs.mUid, parsedArgs.mGid,
parsedArgs.mGids, parsedArgs.mRuntimeFlags, rlimits,
parsedArgs.mMountExternal, parsedArgs.mSeInfo, parsedArgs.mNiceName,
fdsToClose, fdsToIgnore, parsedArgs.mStartChildZygote,
parsedArgs.mInstructionSet, parsedArgs.mAppDataDir,
parsedArgs.mIsTopApp, parsedArgs.mPkgDataInfoList,
parsedArgs.mAllowlistedDataInfoList, parsedArgs.mBindMountAppDataDirs,
parsedArgs.mBindMountAppStorageDirs);
try {
if (pid == 0) {
// in child
zygoteServer.setForkChild();
zygoteServer.closeServerSocket();
IoUtils.closeQuietly(serverPipeFd);
serverPipeFd = null;
return handleChildProc(parsedArgs, childPipeFd,
parsedArgs.mStartChildZygote);
} else {
// In the parent. A pid < 0 indicates a failure and will be handled in
// handleParentProc.
IoUtils.closeQuietly(childPipeFd);
childPipeFd = null;
handleParentProc(pid, serverPipeFd);
return null;
}
} finally {
IoUtils.closeQuietly(childPipeFd);
IoUtils.closeQuietly(serverPipeFd);
}
ZygoteConnection # handleChildProc
private Runnable handleChildProc(ZygoteArguments parsedArgs,
FileDescriptor pipeFd, boolean isZygote) {
/*
* By the time we get here, the native code has closed the two actual Zygote
* socket connections, and substituted /dev/null in their place. The LocalSocket
* objects still need to be closed properly.
*/
closeSocket();
Zygote.setAppProcessName(parsedArgs, TAG);
// End of the postFork event.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
if (parsedArgs.mInvokeWith != null) {
WrapperInit.execApplication(parsedArgs.mInvokeWith,
parsedArgs.mNiceName, parsedArgs.mTargetSdkVersion,
VMRuntime.getCurrentInstructionSet(),
pipeFd, parsedArgs.mRemainingArgs);
// Should not get here.
throw new IllegalStateException("WrapperInit.execApplication unexpectedly returned");
} else {
if (!isZygote) {
return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion,
parsedArgs.mDisabledCompatChanges,
parsedArgs.mRemainingArgs, null /* classLoader */);
} else {
return ZygoteInit.childZygoteInit(
parsedArgs.mRemainingArgs /* classLoader */);
}
}
}
我们看到最终还是调用ZygoteInit的zygoteInit方法,这里我们可以回到第一小节中,其实最终调用的就是App进程的main方法,也就是ActivityThread的main函数。
这里先简单总结一下,无论是forkSystemServer还是fork普通进程,其实最终都是判断pid是否为0,因为这里决定着进程是否创建成功,如果进程创建成功,才会有后续的流程,调用handlexx方法。
调用handleXX方法,最终都是调用ZygoteInit中的zygoteInit方法;
在zygoteInit方法中,会调用ZygoteInit的nativeZygoteInit方法,会开启Binder驱动,创建Binder线程池;
调用RuntimeInit的applicationInit方法,最终调用的就是某个类的main方法,例如forkSystemServer中,会调用SystemServer的main方法;通过ATMS启动进程,会调用ActivityThread的main方法。
2.1.3 ActivityThead分析前面我们提到了,当Zygote fork出app进程之后,就会调用ActivityThread的main方法,这里就是进入到我们熟悉的App进程启动中了。
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
// Install selective syscall interception
AndroidOs.install();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
// Call per-process mainline module initialization.
initializeMainlineModules();
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
// Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
// It will be in the format "seq=114"
long startSeq = 0;
if (args != null) {
for (int i = args.length - 1; i >= 0; --i) {
if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
startSeq = Long.parseLong(
args[i].substring(PROC_START_SEQ_IDENT.length()));
}
}
}
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
这个方法大家很熟悉,首先也是创建looper,保证app进程不会退出;其次就是创建了ActivityThread对象,并调用了其中的attach方法。
在attch方法中,有一段核心代码:
final IActivityManager mgr = ActivityManager.getService();
try {
mgr.attachApplication(mAppThread, startSeq);
} catch (RemoteException ex) {
throw ex.rethrowFromSystemServer();
}
它会调用IActivityManager(也就是AMS在app进程的代理对象)的attachApplication方法,mAppThread就是ApplicationThread对象,这个属于app进程的代理对象,会丢给AMS使用。
final ApplicationThread mAppThread = new ApplicationThread();
就这样,App进程持有AMS端的代理,AMS端也会持有App进程的代理,双方就可以通过Binder完成进程间的通信。
其实在App进程中,可以通过ServiceManager来获取AMS的代理对象的,
private static final Singleton<IActivityManager> IActivityManagerSingleton =
new Singleton<IActivityManager>() {
@Override
protected IActivityManager create() {
final IBinder b = ServiceManager.getService(Context.ACTIVITY_SERVICE);
final IActivityManager am = IActivityManager.Stub.asInterface(b);
return am;
}
};
通过源码便可以得知,获取AMS的代理对象之后,就可以调用它的方法,例如attachApplication,而且还是一个接口类,可以通过动态代理的方式Hook AMS相关的方法调用。
ActivityManagerService # attachApplication
@Override
public final void attachApplication(IApplicationThread thread, long startSeq) {
if (thread == null) {
throw new SecurityException("Invalid application interface");
}
synchronized (this) {
int callingPid = Binder.getCallingPid();
final int callingUid = Binder.getCallingUid();
final long origId = Binder.clearCallingIdentity();
attachApplicationLocked(thread, callingPid, callingUid, startSeq);
Binder.restoreCallingIdentity(origId);
}
}
在这个方法中,最终调用的是attachApplicationLocked方法,在这个方法中,主要作用就是:
调用ApplicationThread的bindApplication方法,这里会通过Handler发送消息,用于创建和初始化Application对象;
private void handleBindApplication(AppBindData data) {
// ......
// probably end up doing the same disk access.
Application app;
final StrictMode.ThreadPolicy savedPolicy = StrictMode.allowThreadDiskWrites();
final StrictMode.ThreadPolicy writesAllowedPolicy = StrictMode.getThreadPolicy();
try {
// 创建Application对象,调用Application的attach方法
app = data.info.makeApplication(data.restrictedBackupMode, null);
// ......
// don't bring up providers in restricted mode; they may depend on the
// app's custom Application class
if (!data.restrictedBackupMode) {
if (!ArrayUtils.isEmpty(data.providers)) {
// 注册 ContentProvicer
installContentProviders(app, data.providers);
}
}
// Do this after providers, since instrumentation tests generally start their
// test thread at this point, and we don't want that racing.
try {
mInstrumentation.onCreate(data.instrumentationArgs);
}
catch (Exception e) {
throw new RuntimeException(
"Exception thrown in onCreate() of "
+ data.instrumentationName + ": " + e.toString(), e);
}
try {
// 调用Application的onCreate方法
mInstrumentation.callApplicationOnCreate(app);
} catch (Exception e) {
if (!mInstrumentation.onException(app, e)) {
throw new RuntimeException(
"Unable to create application " + app.getClass().getName()
+ ": " + e.toString(), e);
}
}
} finally {
// If the app targets < O-MR1, or doesn't change the thread policy
// during startup, clobber the policy to maintain behavior of b/36951662
if (data.appInfo.targetSdkVersion < Build.VERSION_CODES.O_MR1
|| StrictMode.getThreadPolicy().equals(writesAllowedPolicy)) {
StrictMode.setThreadPolicy(savedPolicy);
}
}
// ......
}
所以调用bindApplication方法,主要分为3步:创建Application对象,调用其attach方法、注册Contentprovider、调用Application的onCreate方法。
所以如果想要在Application的onCreate方法执行之前做一些事情,可以放在Contentprovider中处理,但是会影响启动速度。
为ProcessRecord的mThread属性赋值,也就ApplicationThread,用于与App进程通信。
public void makeActive(IApplicationThread thread, ProcessStatsService tracker) {
mProfile.onProcessActive(thread, tracker);
mThread = thread;
mWindowProcessController.setThread(thread);
}
将新创建的ProcessRecord添加到ProcessList中。
final void updateLruProcessLocked(ProcessRecord app, boolean activityChange,
ProcessRecord client) {
mProcessList.updateLruProcessLocked(app, activityChange, client);
}
其实在AMS中就是维护了一组ProcessRecord,每个ProcessRecord中都持有这个进程的AppThread Binder对象。
那么到这里,当Application的onCreate方法执行完成之后,app的进程就已经启动完成了,我们总结一下:
当点击Launcher入口准备启动App时,首先会向AMS发起启动Activity的请求,此时AMS会判断当前进程是否存在,如果不存在,那么就会向Zygote进程发送socket消息,把要创建的进程信息给到Zygote进程;
Zygote进程解析进程信息参数之后,会fork一个子进程,启动Binder并创建Binder线程池,然后调用ActivityThread的main方法;
在ActivityThread的main方法中,创建Looper,并调用ActivityThread的attach方法;
在调用ActivityThread的attach方法时,其实会调用到AMS代理对象的attachApplication方法,进入到SystemServer进程中处理;
在SystemServer进程中,AMS最终会调用attachApplicationLocked方法,在这个方法中会执行AppThread的bindApplication方法,在这个方法中,会创建Application对象,最终执行Application的onCreate方法;
当执行完Application的onCreate方法之后,App进程算是启动了,此时会对App进程对应的ProcessRecord对象调用makeActive赋值处理,然后将其添加到ProcessList当中。
这就是AMS创建app进程的全流程,既然App进程已经启动了。
以上就是Android AMS启动App进程原理分析的详细内容,更多关于Android AMS启动App的资料请关注软件开发网其它相关文章!